New Results from CMS Richard Cavanaugh, Fermilab / UIC LHC Physics Center co-Coordinator Fermilab Wine & Cheese Seminar 16 March, 2012 http://lpc.fnal.gov/ # Datasets and Reconstruction # Datasets and Reconstruction Fermilab # Excellent Performance - More than 5 fb-1 data collected @ 7 TeV - € Peak Lumi 3.5×10³³ cm⁻²s⁻¹ - Data taking efficiency: 90% - Data certified for analysis: 90% - Mean pileup: 10 ## Datasets and Reconstruction # Excellent Performance - More than 5 fb-1 data collected @ 7 TeV - Peak lumi 3.5×1033 cm-25-1 - Data taking efficiency: 90% - Data certified for analysis: 90% - Mean pileup: 10 #### Particle Flow in CMS - Aim to reco. EVERY particle in event - · Exploit detector redundancy, whilst avoiding double counting - · Provides global event description • via list of individual particles - € Huge improvements to T, jets, & MET - Improvements to isolation, PU subt. # Set the Stage for PF: Jet Composition Fermilab UIC University of Illinois at Chicago # Set the Stage for PF: Jet Composition Fermilab UC University of Illinois at Chicago Charged particles: ~60% Mostly charged pions, kaons and protons, but also some electrons and muons - Charged particles: ~60% - Tracking - Mostly charged pions, kaons and protons, but also some electrons and muons - Photons: ~25% ECAL - Mostly from π° 's, but also some genuine photons (brems,...) - · Charged particles: ~60% - Tracking - · Mostly charged pions, kaons and protons, but also some electrons and muons - Photons: ~25% ECAL - Mostly from π° 's, but also some genuine photons (brems,...) - · Long-lived neutral hadrons: ~10% - · Ko, neutrons - Charged particles: ~60% Tracking - Mostly charged pions, kaons and protons, but also some electrons and muons - Photons: ~25% ECAL - · Mostly from πo's, but also some genuine photons (brems,...) - Long-lived neutral hadrons: ~10% - · Ko, neutrons - Short-lived neutral hadrons, "Vo's": ~5% Tracking - Charged particles: ~60% Tracking - · Mostly charged pions, kaons and protons, but also some electrons and muons - Photons: ~25% ECAL - · Mostly from πo's, but also some genuine photons (brems,...) - Long-lived neutral hadrons: ~10% HCAL - · Ko, neutrons - Short-lived neutral hadrons, "Vo's": ~5% Tracking Full use of Detector Information significantly improves physics object performance # Particle Flow Algorthm First Associate Hits within Each Detector # Particle Flow Algorthm Then Link Across Detectors # Particle Flow Algorthm ## Finally Apply Particle ID & Separation #### "Clean" the Event During Reconstruction! • Find and "remove" muons (σ_{track}) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$]) - Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}]) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$]) - Find and "remove" converted photons ($min[\sigma_{track}, \sigma_{ECAL}]$) - Find and "remove" charged hadrons (σ_{track}) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$]) - Find and "remove" converted photons (min[σ_{track} , σ_{ecal}) - Find and "remove" charged hadrons (σ_{track}) - · Find and "remove" Vo's (σ_{track}) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$]) - Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}]) - Find and "remove" charged hadrons (σ_{track}) - · Find and "remove" Vo's (σ_{track}) - Find and "remove" photons (σ_{ECAL}) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons (min[$\sigma_{track}, \sigma_{ECAL}$]) - Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}]) - Find and "remove" charged hadrons (σ_{track}) - · Find and "remove" Vo's (σ_{track}) - Find and "remove" photons (σ_{ECAL}) - · Left with neutral hadrons (10%) (σ_{HCAL} + fake) - Find and "remove" muons (σ_{track}) - Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$) - Find and "remove" converted photons (min[σ_{track} , σ_{ECAL}]) - Find and "remove" charged hadrons (σ_{track}) - · Find and "remove" Vo's (σ_{track}) - Find and "remove" photons (σ_{ECAL}) - · Left with neutral hadrons (10%) (σ_{HCAI} + fake) - Use above list of Reconstructed Particles to describe the entire event! # CMS ### **Jet & MET Reconstruction** 10² p_{_} [GeV/c] 0 ## Standard Model #### W Charge Asymmetry - ud -> W+; du -> W- - 1st quark from valence - 2nd quark from sea - pp collider: more W+ then W- $$\mathcal{A}(\eta) = \frac{d\sigma/d\eta(W^+ \to \ell^+\nu) - d\sigma/d\eta(W^- \to \ell^-\bar{\nu})}{d\sigma/d\eta(W^+ \to \ell^+\nu) + d\sigma/d\eta(W^- \to \ell^-\bar{\nu})}$$ # **B** Physics # R Physics Bs -> 44 • SM Prediction: Br = (3,2±0,2)x10-9 # Dhysics - SM Prediction: Br = (3,2±0,2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - SM Prediction: Br = (3.2±0.2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - · Blind analysis - SM Prediction: Br = (3,2±0,2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - · Blind analysis - SM Prediction: Br = (3,2±0,2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - Blind analysis p-value for B hypothesis: #### Bs -> 44 - SM Prediction: Br = (3,2±0,2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - Blind analysis p-value for B hypothesis: 0.06 p-value for S+B hypothesis: 0.71 #### Bs -> 44 - SM Prediction: Br = (3,2±0,2)×10-9 - B+ \rightarrow J/ ψ K+ Normalisation Sample - Blind analysis p-value for B hypothesis: 0.06 p-value for S+B hypothesis: 0.71 #### Br(Bs → µµ) < 7.7×10-9 at 95%CL # CMS ### TOP $$\sigma_{t-\text{ch.}} = 70.2 \pm 5.2 (\text{stat.}) \pm 10.4 (\text{syst.}) \pm 3.4 (\text{lumi.}) \text{ pb}$$ $|V_{\rm tb}| = 1.04 \pm 0.09$ (exp.) ± 0.02 (th.) #### Single top - · Dominant signature - 1 central isolated lepton - 1 b-jet + 1 forward recoil jet - Main backgrounds - Multijets: fit MET spectrum with template from lepton sideband - W+jets: re-scale discriminator output from MLVb sideband Leaving (re)discovery phase; precision measurements just around the corner! 12 16.03.20 708-22-022 ### $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ - Fully data driven measurement - b-tagging, mis-tag efficiencies via QCD sample - Num reconstructed t→Wq estimated from lept-jet inv. mass spectrum TOP-11-015 TOP-11-016 Top Mass TOP-11-016 ### Top Mass Kinematic fit with ideogram Like method TOP-11-016 ### Top Mass - Kinematic fit with ideogram Like method - combine event-by-event likelihood TOP-11-016 ### Top Mass - Kinematic fit with ideogram like method - combine event-by-event likelihood - Lepton + Jets channel allows in-situ calibration of light quark JES from W->99' Leg TOP-11-016 - Kinematic fit with ideogram like method - combine event-by-event likelihood - Lepton + Jets channel allows in-situ calibration of light quark JES from W->99' Leg Number of permutations / 0.05 TOP-11-016 ### Top Mass - Kinematic fit with ideogram like method - combine event-by-event likelihood - Lepton + Jets channel allows in-situ calibration of light quark JES from W->99' Leg | | CMS Prelimi | nary,√s=7 TeV | | | | | | |-----|--|---------------|---|-------------------|---|-------------------|--| | | Tevatron 2011 combination arXiv:1107.5255v3 up to 5.8/fb | | | | 173.2 ± 0.6 ± 0.8
(val. ± stat. ± syst.) | | | | | CMS combin
up to L= 4.9/fb | nation | ••• | | 172.6 ± 0.4
(val. ± stat. ± sy | | | | | CMS 2011 d
PAS-TOP-11-016 | | - | → | 173.3 ± 1.2 ± 2.5 (val. ± stat. ± syst.) | | | | | CMS 2011 µ:
PAS-TOP-11-015 | | | | 172.6 ± 0.4 (val. \pm stat. \pm sy | | | | | CMS 2010 I-
PAS-TOP-10-009 | | | → | 173.1± 2.1± 2.7
(val.± stat.± syst.) | | | | | CMS 2010 d
JHEP 07 (2011) (| - | 175.5 ± 4.6 ± 4
(val.± stat.± syst.) | | | | | | | 150 | 100 | 470 | 100 | 100 | | | | 140 | 150 160 | | 170 | 180
[| 190
VI_top (Ge | 200
eV/c²) | | | | | | | δ_{m_t} (0 | GeV) (| $\delta_{ m IES}$ | | | | o_{m_t} (GeV) | $o_{ m JES}$ | |-----------------------------------|-----------------|--------------| | Calibration | 0.15 | 0.001 | | <i>b</i> -tagging | 0.17 | 0.002 | | b-JES | 0.66 | 0.000 | | p_T - and η -dependent JES | 0.23 | 0.003 | | Jet energy resolution | 0.21 | 0.003 | | Missing transverse energy | 0.08 | 0.001 | | Factorization scale | 0.76 | 0.007 | | ME-PS matching threshold | 0.25 | 0.007 | | Non- $t\bar{t}$ background | 0.09 | 0.001 | | Pile-up | 0.38 | 0.005 | | PDF | 0.05 | 0.001 | | Total | 1.18 | 0.012 | Number of permutations / 0.05 ### Testing pQCD in ttbar! # Fermi ab inois #### Good agreement found for all quantities studied ### W helicity in ttbar Measure θ*, angle between lepton and b (W rest frame) ### W helicity in ttbar - Measure θ*, angle between lepton and b (W rest frame) - Distribution reflects 3 possible W polarisations ### W helicity in ttbar - Measure θ^* , angle between lepton and b (W rest frame) - Distribution reflects 3 possible W polarisations - · Fo = 0.698, FL = 0.301, FR = 4.1x10-4 ### W helicity in ttbar - Measure θ^* , angle between lepton and b (W rest frame) - Distribution reflects 3 possible W polarisations - · Fo = 0.698, FL = 0.301, FR = 4.1x10-4 $$F_L = 0.393 \pm 0.045 (\text{stat.}) \pm 0.029 (\text{syst.})$$ $F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$ ### W helicity in ttbar - Measure θ^* , angle between lepton and b (W rest frame) - Distribution reflects 3 possible W polarisations - · Fo = 0.698, - FL = 0.301, - FR = 4.1x10-4 - Anomalous twb couplings lead to deviations $$F_L = 0.393 \pm 0.045 \text{(stat.)} \pm 0.029 \text{(syst.)}$$ $$F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$$ - Tevatron sees a possible differential dependency on charge asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! # Top Charge Asymmetry - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! ### TOP # Top Charge Asymmetry - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! ### TOP $\mathbf{A}_{_{\mathrm{C}}}$ 708-22-030 ### Top Charge Asymmetry - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! • Fair agreement between data and theory after unfolding $0.003 \pm 0.004 \text{ (stat.)}$ Uncorrected $0.001 \pm 0.005 \text{ (stat.)}$ **BG-subtracted** $0.004 \pm 0.010~(stat.)~\pm 0.012~(syst.)$ Final corrected 0.0115 ± 0.0006 Theory prediction (SM) AC Physics Center 708-22-030 $0.004 \pm 0.010~{ m (stat.)}~\pm 0.012~{ m (syst.)}$ 0.0115 ± 0.0006 Tevatron & top LHC #### **‡** Fermilab University of Illinois at Chicago AC Physics Center - Tevatron sees a possible differential dependency on charge asymmetry Asymmetry $A^{C} = (N^{+} N^{-})/(N^{+} + N^{-})$ - Crucial difference at LHC: gluon collider! • Fair agreement between data and theory after unfolding Uncorrected **BG-subtracted** Final corrected Theory prediction (SM) #### Indirect searches - MH < 169 GeV @ 95% CL (standard fit) - MH < 143 GeV @ 95% CL (before LHC) #### Direct searches - · LEP: MH > 114.4 GeV at 95% CL - Tevatron: MH < 147 GeV at 95% CL #### SM Higgs favoured at low mass, above the LEP limit independent channels mass range 110-600 GeV Expected combined 95% exclusion: 114.5 to 543 GeV Exclusion sensitivity at LEP lower limit #### H to YY - € Small BR: ~2×10-3 - Two isolated high pt photons VBF channel has two jets from quarks #### H to YY - Small BR: ~2x10-3 - Two isolated high pT photons VBF channel has two jets from quarks - · Narrow mass peak - e very good mass resolution 1-2% LHC Physics Center ### H to YY - · Signature: small mass peak over large smoothly decreasing background - · Irreducible: 24 QCD production - · Reducible: Y+jet with additional fake Y, DY with e's faking y's - Studied mass range: 110-150 GeV ### Main Update - MVA analysis, inputs very similar to published cut \$\pm\$ count analysis HIG-11-033, arXiv:1202.1487 - Goal: optimise use of high quality events - exploit detector perf. and kinematics - MVA based Photon ID and MVA based diphoton event classification - Four non-VBF classes, based on MVA output - One VBF class with dijet tagged events - · Lower cut on diphoton event class. ### Main Update - MVA analysis, inputs very similar to published cut & count analysis - HIG-11-033, arXiv:1202.1487 - · Goal: optimise use of high quality events - exploit detector perf. and kinematics - MVA based Photon ID and MVA based diphoton event classification - · Four non-VBF classes, based on MVA output - One VBF class with dijet tagged events - e Lower cut on diphoton event class. # Background Modelling - e polynomial (3rd to 5th order) fit to - Bias - measured with MC toys - found to be less than 20% • Cross check - sliding window background model • yields consistent with limits HIG-12-001 ### Exclusion Limits - · Expected 95% CL exclusion - @ 1.2 to 2.0 x SM - · Excluded at 95% CL - · [110.0, 111.0] - · [117.5, 120.5] - · [128.5, 132.0] - · [139.0, 140.0] - · [146.0, 147.0] - · Cut based analysis consistent results - · Cross check MVA also consistent ### Results - Largest excess at 125 GeV - Global significance 1.60 arXiv:1202.4083 HIG-11-029 # Low mass: H to TT ● No narrow mass peak: σ(m) ≈ 20% - · Also important for MSSM Three different sub-channels: - · VBF production: 2 forward jets Boosted: one jet pT > 150 GeV • 99-fusion: 0 or 1 additional jets ## Two new channels added - H -> TT -> μμ: (HIG-12-007) - · large bkg from Z->44 - WH -> LTT -> еµт, µµт: (HIG-12-006) • also sensitive to WH -> WWW - · use same sign eμ, μμ arXiv:1202.1489 HIG-11-024 ### H -> WW -> 212V - Most sensitive channel around 2xMw - No Narrow mass peak: $\sigma(m) \approx 20\%$ - Two high pT isolated leptons+MET · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets arXiv:1202.1489 HIG-11-024 #### H -> WW -> 212v - Most sensitive channel around 2xMw - No Narrow mass peak: $\sigma(m) \approx 20\%$ - Two high pT isolated leptons+MET · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets scalar boson + V-A structure of W decay, favours small opening angle between leptons arXiv:1202.1489 HIG-11-024 #### H -> WW -> 212v - Most sensitive channel around 2xMw - No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET - · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets - Most sensitive channel around 2xMw - No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET - · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets scalar boson + V-A structure of W decay, favours small opening angle between leptons #### Analysis - · Background estimation crucial - Main bkgs estimated from data - · Analysis performed in - © 0,1,2 jet multiplicity bins - ee, μμ, eμ flavour bins - Cut & count as well as MVA - Optimised as a function of Mh - · Lepton trigger and ID down to 10 GeV arXiv:1202.1489 HIG-11-024 #### H -> WW -> 212v - Most sensitive channel around 2xMw • No Narrow mass peak: $\sigma(m) \approx 20\%$ - Two high pT isolated leptons+MET - · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets scalar boson + V-A structure of W decay, favours small opening angle between leptons #### Analysis - · Background estimation crucial - Main bkgs estimated from data - · Analysis performed in - o,1,2 jet multiplicity bins - e ee, μμ, eμ flavour bins - Cut & count as well as MVA - Optimised as a function of Mh - · Lepton trigger and ID down to 10 GeV arXiv:1202.1489 HIG-11-024 #### H -> WW -> 212v - Most sensitive channel around 2xMw - No Narrow mass peak: $\sigma(m) \approx 20\%$ • Two high pT isolated leptons+MET - · Main backgrounds - WW (irreducible) - · Z+jets, WZ, ZZ, tt, W+jets scalar boson + V-A structure of W decay, favours small opening angle between leptons #### Analysis - · Background estimation crucial - Main bkgs estimated from data - · Analysis performed in - o,1,2 jet multiplicity bins - e ee, μμ, eμ flavour bins - Cut & count as well as MVA - Optimised as a function of Mh - · Lepton trigger and ID down to 10 GeV - Main backgrounds estimated from data | stage | WH (120) | WH (120) | data | all bkg. | WZ | ZZ | $top+Z/\gamma^*$ | |---|---------------------------|--------------------|------|------------------|------------------------|--------------------|------------------| | | $H \rightarrow \tau \tau$ | $H \rightarrow WW$ | | | $\rightarrow 3\ell\nu$ | $ ightarrow 4\ell$ | _ | | 3-lepton preselection | 2.1 ± 0.0 | 3.5 ± 0.1 | 950 | 968.3 ± 11.9 | 482.9 ± 1.8 | 78.4 ± 0.9 | 348.0 ± 9.7 | | min-MET > 40 GeV | 1.0 ± 0.0 | 1.8 ± 0.1 | 244 | 270.5 ± 4.4 | 208.2 ± 1.1 | 7.9 ± 0.3 | 54.5 ± 4.3 | | Z removal | 0.4 ± 0.0 | 1.0 ± 0.1 | 40 | 47.9 ± 3.1 | 15.9 ± 0.4 | 0.7 ± 0.1 | 31.3 ± 3.1 | | top veto | 0.1 ± 0.0 | 0.6 ± 0.1 | 12 | 14.2 ± 1.3 | 8.8 ± 0.4 | 0.4 ± 0.1 | 4.9 ± 1.3 | | $\Delta R_{\ell^+\ell^-} \& m_{\ell\ell}$ | 0.1 ± 0.0 | 0.5 ± 0.1 | 7 | 8.4 ± 0.9 | 5.7 ± 0.2 | 0.3 ± 0.1 | 2.6 ± 0.9 | # Summary & Outlook - Higgs Boson search in 11 independent - Expected 95% CL exclusion: - M(h) in [113.5, 543] GeV - Observed 95% CL exclusion - M(h) in [127.5, 600] GeV • If the SM Higgs exists, at 95% CL then - · M(h) in [114.5, 127.5] GeV # Summary & Outlook - Observe an excess around 125 GeV. • Significance: Local 2.80, Global - 0.80 [110, 600] \$ 2.10 [110, 145] • Excess consistent with - a background fluctuation - e a SM Higgs Boson near 125 GeV mass - More data needed to investigate origin • 2012 LHC will run at 8 TeV should be able to discover or exclude Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN Also R. Barbieri, A. Weiler, etc, etc Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN Also R. Barbieri, A. Weiler, etc, etc Nima Arkni-Hamid Implications of LHC Workshop 31 October, CERN Also R. Barbieri, A. Weiler, etc, etc | 0-leptons | 1-lepton | OSDL | SSDL | ≥3 leptons | 2-photons | γ+lepton | |------------|----------------------------------|---|--|--------------|--------------------------|-----------------------------| | Jets + MET | Single
lepton +
Jets + MET | Opposite-
sign di-
lepton + jets
+ MET | Same-sign
di-lepton +
jets + MET | Multi-lepton | Di-photon +
jet + MET | Photon +
lepton +
MET | Large SM backgrounds Small Sensitivity to strongly produced SUSY #### The Strategy - Focus on signatures (topologies), use different approaches/ observables - e alpha_T, "Razor", HT, MHT, ... - · Established many different techniques to derive backgrounds - jet smearing & rebalancing, ABCD, fakeable-object technique to estimate fake lepton rates, generic properties of lepton pT spectra, generic properties of SM spectra - · Cross check, cross check, cross check... $$R \equiv \frac{M_T^R}{M_R} \qquad M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$ #### Search with Razor - Both R2 & MR observed to fall exponentially - · Background strategy - fit exponential to data in Control Regions - extrapolate into Signal Regions $$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$ $$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$ (E10.0)\211 CMS Preliminary VS=7 TeV 505-12-005 # single lepton search • Two data-driven methods: · Lepton Spectrum (LS) o uses pr(1) to predict pr(v); binned in HT and MET · Lepton Projection (LP) • uses W polarisation variable; binned in HT and ST = PT(L)+MET • W polarised in W+jets W not polarised in SUSY 35 Two data-driven methods: · Lepton Spectrum (LS) pr(1) to predict pr(v); ed in HT and MET Projection (LP) s W polarisation variable; ned in HT and ST = PT(L)+MET polarised in W+jets not polarised in SUSY LHC Physics Center - Two data-driven methods - Cut & count: - pT(ll) used to predict pT(vv); binned in HT # MET - e Two data-driven methods - Cut & count: - pT(II) used to predict pT(vv); binned in HT # MET ## CMS #### SUSY - Two data-driven methods Cut \$ count: - pT(LL) used to predict pT(vv); binned in HT MET ## CMS #### SUSY - Two data-driven methods Cut \$ count: - pT(II) used to predict pT(vv); binned in HT - Search for kinematic edge in m(11) - e model bkg using ex data - Two data-driven methods - Cut & count: - pT(LL) used to predict pT(vv); binned in HT # MET - Search for kinematic edge in m(11) - model bkg using ex data #### **‡** Fermilab SUSY $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.7 \text{ fb}^{-1}$ **CMS Preliminary** CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, $\int Ldt = 4.7 \text{ fb}^{-1}$ OS Dileptons $H_T > 300 \text{ GeV}$ ee 600 10² [GeV] μμ observed $tan(\beta)=10$ **▲ e**μ 550 LEP2 \widetilde{l}^{\pm} $A_0 = 0 \text{ GeV}$ observed (±1 σ theory) $\mu > 0$ expected (±1\sigma stat) 10 LEP2 $\widetilde{\chi}_{1}^{\pm}$ 500 • pred $m_{t} = 173.2 \text{ GeV}$ low H₊ observed 2010 high H₊ 🗢 obse 450 CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, $\int L \, dt \, 4.7 \, fb^{-1}$ high E_Tmiss 100 $m(\tilde{g}) = 1000$ 400 $m(\tilde{q})$ 350 CMS Pre 1000 1200 Entries / 10.0 GeV 25 = 2500H_T (GeV) √s = 7 Te\ 1500 300 4.7 fb⁻¹ 20 served II) prediction 250 prediction educible (MC) 15 $m(\tilde{g}) = 500$ al Uncertainty 200 NOEWSB 10 150 100 3000 500 1000 1500 2000 2500 50 m_o [GeV] $300 > H_T > 125$ 505-22-022 $E_{\tau}^{miss} > 275$ 37 -200 200 JZB [GeV] 400 600 800 1000 1200 gluino mass [GeV] 600 - · Compressed spectra -> Low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est. method - MVA output determined in sideband - MC used to transfer MVA to Signal R. #### OS Dileptons with ANN - · Compressed spectra -> Low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est. method - MVA output determined in sideband - MC used to transfer MVA to Signal R. # Compressed Spectra scenario -> Low MET - · Compressed spectra -> low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est. method - MVA output determined in sideband - MC used to transfer MVA to Signal R. - · Compressed spectra -> Low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est. method - MVA output determined in sideband - MC used to transfer MVA to Signal R. - · Compressed spectra -> Low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est, method - MVA output determined in sideband - MC used to transfer MVA to Signal R. - · Compressed spectra -> Low MET - Use MVA to relax MET requirements - Improves signal acceptance in "difficult to find" regions by factors - · Hybrid MC+data-driven bkg est. method - MVA output determined in sideband - MC used to transfer MVA to Signal R. #### SS Dileptons • SM backgrounds highly suppressed. #### SS Dileptons SM backgrounds highly suppressed. Challenge is to measure fake leptons! #### SS Dileptons - SM backgrounds highly suppressed. Challenge is to measure fake leptons! - Two data-driven methods - B tag-and-probe method - "Tight-Loose" method TL ratio: $$R_{TL} = \frac{leptons\ passing\ analysis\ selection}{leptons\ passing\ loose\ selection}$$ Measure RTL in independent QCD dominated Control Sample #### SS Dileptons - SM backgrounds highly suppressed. Challenge is to measure fake leptons! - Two data-driven methods - B tag-and-probe method - · "Tight-Loose" method - Define Signal Regions in MET & HT #### SS Dileptons - SM backgrounds highly suppressed. Challenge is to measure fake leptons! - Two data-driven methods - B tag-and-probe method - · "Tight-Loose" method - Define Signal Regions in MET & HT #### SS Dileptons + 2b-jets - Similar to SS dilepton analysis: just add 2 b-tagged jets - Fake lepton background from b's dramatically smaller! - top contribution expected to decrease by factor of 2! - More exclusive search - Same-sign top production - SUSY 4 top final states - · SUSY sbottom pair production - SUSY 4b4W final states 5115-12-020 #### SS Dileptons + 2b-jets Similar to SS dilepton analysis: just add 2 b-tagged jets • Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! - · More e - @ Same - e SUSY - e SUSY - e SUSY | | | | , | | | | | |----------------------------|--------------------|-----------------------|-----------------|------------------------|-----------------|---------------------|-------------------| | | SR1 | SR2 | SR3 | SR4 | SR5 | SR6 | SR7 | | No. of jets | ≥ 2 | ≥ 3 | | No. of btags | ≥ 2 | ≥ 3 | | Lepton charges | ++/ | ++ | ++/ | ++/ | ++/ | ++/ | ++/ | | $ \not\!\!E_{ m T} $ | \geq 30 GeV | ≥ 30 GeV | ≥ 120 GeV | $\geq 50\mathrm{GeV}$ | \geq 50 GeV | $\geq 120~{ m GeV}$ | ≥ 50 GeV | | H_{T} | $\geq 80~{ m GeV}$ | $\geq 80 \text{ GeV}$ | ≥ 200 GeV | $\geq 200\mathrm{GeV}$ | ≥ 320 GeV | \geq 320 GeV | ≥ 200 GeV | | q-flip BG | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.05 ± 0.01 | 0.3 ± 0.1 | 0.12 ± 0.03 | 0.026 ± 0.009 | 0.008 ± 0.004 | | Fake BG | 3.4 ± 2.0 | 1.8 ± 1.2 | 0.32 ± 0.50 | 1.5 ± 1.1 | 0.81 ± 0.78 | 0.15 ± 0.45 | 0.15 ± 0.45 | | Rare SM BG | 3.2 ± 1.6 | 2.1 ± 1.1 | 0.56 ± 0.28 | 2.0 ± 1.0 | 1.04 ± 0.52 | 0.39 ± 0.20 | 0.11 ± 0.06 | | Total BG | 7.7 ± 2.6 | 4.4 ± 1.6 | 0.9 ± 0.6 | 3.7 ± 1.5 | 2.0 ± 0.9 | 0.6 ± 0.5 | 0.3 ± 0.5 | | Event yield | 7 | 5 | 2 | 5 | 2 | 0 | 0 | | N_{UL} (12% unc.) | 7.4 | 6.9 | 5.2 | 7.3 | 4.7 | 2.8 | 2.8 | | N_{UL} (20% unc.) | 7.7 | 7.2 | 5.4 | 7.6 | 4.8 | 2.8 | 2.8 | | N _{UL} (30% unc.) | 8.1 | 7.6 | 5.8 | 8.2 | 5.1 | 2.8 | 2.8 | #### SS Dileptons + 2b-jets Similar to SS dilepton analysis: just add 2 b-tagged jets • Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets • Similar to SS dilepton analysis: just add 2 b-tagged jets Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets • Similar to SS dilepton analysis: just add 2 b-tagged jets Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets - Similar to SS dilepton analysis: just add 2 b-tagged jets - Fake lepton background from b's dramatically smaller! - top contribution expected to decrease by factor of 2! - More exclusive search 41 16.03.2012 # SUSY #### SS Dileptons + 2b-jets • Similar to SS dilepton analysis: just add 2 b-tagged jets Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets Similar to SS dilepton analysis: just add 2 b-tagged jets Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets Similar to SS dilepton analysis: just add 2 b-tagged jets Fake lepton background from b's dramatically smaller! • top contribution expected to decrease by factor of 2! #### SS Dileptons + 2b-jets - Similar to SS dilepton analysis: just add 2 b-tagged jets - Fake lepton background from b's dramatically smaller! - top contribution expected to decrease by factor of 2! - More exclusive search #### SS Dileptons + 2b-jets - Similar to SS dilepton analysis: just add 2 b-tagged jets - Fake lepton background from b's dramatically smaller! - top contribution expected to decrease by factor of 2! - More exclusive search # Multi-Leptons - adding additional leptons · removes all QCD backgrounds - fake lepton bkgs important - · Sensitive to - · Direct EWK gaugino production - GGM slepton co-NLSP models R-Parity Violating models LHC Physics Center 10⁻² 0 20 60 40 80 120 100 # photons - two selections: - Y + 2 jets + MET > 100 GeV YY + 1 jet + MET > 50 GeV 140 160 180 ⊭_⊤ [GeV] - two selections: • Y + 2 jets + MET > 100 GeV • YY + 1 jet + MET > 50 GeV # QCD Background - real photons or fakes from jets - MET estimated from control reg. Y: reweight with "photon" pt • YY: normalise to YY at low MET # photons - two selections: - Y + 2 jets + MET > 100 GeV e yy + 1 jet + MET > 50 GeV # QCD Background - real photons or fakes from jets • MET estimated from control reg. - Y: reweight with "photon" pT • YY: normalise to YY at low MET # Electron Background - · fake y from e in W decays: real MET - use measured e → y fake rate - other bkgs taken from simulation 505-12-001 ### photons - interpretation in general gauge mediation (GGM) - gravitinio as LSP - Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP SUS-12-001 #### photons - interpretation in general gauge mediation (GGM) - gravitinio as LSP - Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP ## SUSY SUS-12-001 - interpretation in general gauge mediation (GGM) - gravitinio as LSP - · Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP - interpretation in general gauge mediation (GGM) - gravitinio as LSP - · Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP - interpretation in general gauge mediation (GGM) - gravitinio as LSP - · Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP ## SUSY SUS-12-001 - interpretation in general gauge mediation (GGM) - gravitinio as LSP - Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP ## SUSY SUS-12-001 - interpretation in general gauge mediation (GGM) - gravitinio as LSP - · Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP # CMS ## SUSY SUS-12-001 - interpretation in general gauge mediation (GGM) - gravitinio as LSP - · Pheno driven by NLSP - simplified model with bino-like & wino-like neutralino LSP - Also interpreted in a UED context ### Dilepton Resonances - Bump hunting in the DY tail - · No QCD; Very clean - · Sequential SM Z' < 2.3 TeV excluded ### Dilepton Resonances - Bump hunting in the DY tail - No QCD; Very clean - Sequential SM Z' < 2.3 TeV excluded ### Dilepton Resonances - · Bump hunting in the DY tail - · No QCD; Very clean - Sequential SM Z' < 2.3 TeV excluded 3.2 TeV excluded Dijet Mass (GeV) # **‡** Fermilab Exptic Boosted Tops University of Illinois at Chicago ttbar Resonances · Hadronic t decay: three jets; · Boosted: merge to single fat jet · Apply Jet sub-struct: • two sub-jets: m(W) • three sub-jets: m(t) EX0-11-006 46 # Exotic Boosted Tops #### **‡** Fermilab University of Illinois at Chicago ## ttbar Resonances - · Hadronic t decay: three jets; - · Boosted: merge to single fat jet - Apply Jet sub-struct: two sub-jets: m(W) - three sub-jets: m(t) #### **‡** Fermilab Exotic Boosted Tops University of Illinois at Chicago ttbar Resonances CMS Preliminary, 4.6 fb⁻¹ √s = 7 TeV · Hadronic t decay: ≨ 140 m_{w}^{DATA} three jets; $= 83.0 \pm 0.7 \text{ GeV/c}^2$ ഥ 120 · Boosted: merge to $= 82.5 \pm 0.3 \text{ GeV/c}^2$ vents 80 Data single fat jet Top Apply Jet sub-struct: two sub-jets: m(W) W+Jets 60 F QCD — Data fit • three sub-jets: m(t) 40 --MC fit 20 -100 120 140 160 180 200 EX0-11-006 Mass of W-Jet Candidate (GeV/c²) CMS preliminary, 4.6 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ Observed QCD background estimate tt simulation $Z'(1 \text{ TeV/c}^2) \sigma = 4.5 \text{ pb}$ $Z'(1.5 \text{ TeV/c}^2) \sigma = 0.59 \text{ pb}$ Events $Z'(2 \text{ TeV/c}^2) \circ = 0.1 \text{ pb}$ $Z'(3 \text{ TeV/c}^2) \sigma = 0.014 \text{ pb}$ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Type $1+1 \text{ t\bar{t}}$ mass (GeV/c²) 46 #### Exotic Boosted Tops University of Illinois at Chicago ttbar Resonances CMS Preliminary, 4.6 fb⁻¹ √s = 7 TeV · Hadronic t decay: ≥ 140 mwDATA three jets; $= 83.0 \pm 0.7 \text{ GeV/c}^2$ ഥ 120 $= 82.5 \pm 0.3 \text{ GeV/c}^2$ · Boosted: merge to ents ents Data single fat jet Top Apply Jet sub-struct: two sub-jets: m(W) W+Jets 60 F QCD — Data fit • three sub-jets: m(t) 40 --MC fit 20 100 120 140 160 180 200 EX0-11-006 Mass of W-Jet Candidate (GeV/c²) CMS preliminary, 4.6 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ CMS Preliminary, 4.6 fb⁻¹ at $\sqrt{s} = 7$ 10% Width Assumption Observed (95% CL) Observed QCD background estimate SH Expected (95% CL) tt simulation 10 $Z'(1 \text{ TeV/c}^2) \sigma = 4.5 \text{ pb}$ ± 1 s.d. Expected $Z'(1.5 \text{ TeV/c}^2) \sigma = 0.59 \text{ pb}$ Events $Z'(2 \text{ TeV/c}^2) \circ = 0.1 \text{ pb}$ ± 2 s.d. Expected $Z'(3 \text{ TeV/c}^2) \sigma = 0.014 \text{ pb}$ Topcolor Z', 10.0% width, Harris et al-10⁻¹ 10⁻² 500 1000 1500 2000 2500 3000 3500 4000 4500 5000³ 2.5 1.5 Type $1+1 \text{ t\bar{t}}$ mass (GeV/c²) tt Invariant Mass (TeV/c²) 46 **‡** Fermilab ## **Exotic Particles Decaying to WZ** #### Models - Sequential SM: W' to WZ to 3L + V - · Technicolor: technihadrons ptc, TTC bound states of new strong interaction, PTC to WZ to 31 +V ## Event Reco; Bkg Rejection - W boson reco: 2-fold ambiguity; choose smaller |pvz| (75% correct) - MET requirement (due to v) - Reject 41 events consistent with ZZ hypothesis - · Limit mass dependent scalar sum $H_T = \Sigma(p^L_T)$ ## **Exotic Particles Decaying to WZ** #### Models - Sequential SM: W' to WZ to 3L + V - · Technicolor: technihadrons ptc, TTC bound states of new strong interaction, ptc to WZ to 31 +v ## Event Reco; Bkg Rejection - W boson reco: 2-fold ambiguity; choose smaller |pvz| (75% correct) - MET requirement (due to v) - Reject 41 events consistent with ZZ hypothesis - · Limit mass dependent scalar sum $H_T = \Sigma(p^l_T)$ Direct Detection Monophoton + MET Collider Searches vector: spin-independent (SI) Bai, Fox, Harnik, JHEP 1012:048(2010) axial-vector: spin-dependent (SD) $$\mathcal{O}_{AV} = rac{(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$ # CMS ## Dark Matter Detection in CMS ### Monojets - Large MET; Nj = 1 or 2; Δφ(j1,j2) < 2.5 Data-driven bkg Z->VV via μμ - W->LV via SB #### GeV CMS Preliminary W→lv L dt = 4.7 fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$ 25 QCD 10⁴ Z→I⁺l⁻ 10³ ADD M_D2δ3 10^{2} 10 1 200 400 600 800 1000 E_T^{miss} [GeV] #### Monophotons High pt, central, isolated y; large MET; central jet veto Backgrounds - Data-driven - Monte Carlo ## **Exotica Summary** ## SUMMARY - · CMS had a banner 2011! - more than 40 new results sent to winter conferences: Standard Model, B-physics, Top, Higgs, SUSY, Exotica - Will 2012 be the year that the Standard Model finally breaks? - · Rule out SM Higgs? Rule out SM Bs -> µµ? - · Incontrovertible proof of New Physics! - · Or, will the Standard Model triumph yet again? - Discover SM Higgs! Discover SM Bs -> μμ! - Both Represent tremendous discoveries; Cumulation of scientific thought from the previous century! - · Or, will will we ... - · Discover Higgs & SUSY? - · A true renaissance! - · We are in the midst of an amazing time in science! - A cross-road, sure to change our understanding of nature in fundamental ways! ## Acknowledgements #### · Many thanks to - Adi Bornheim, Ben Hooberman, Georgia Karapostoli, Steven Lowette, Marco Pieri, Lars Sonnenschein, Steve Worm - And to the many others who contributed to CMS results to Moriond! ## **Standard Model** GeV Events/2 70 CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L = 2.1 \text{ fb}^{-1}$ Dimuon sample Data tt DY+jets SMP-12-003 #### Z+bb - Important QCD Measurement - Benchmark channel (\$ bkg) for Higgs search - · Simulation: ME+PS using MadGraph+Pythia - Data unfolded to hadron-level | Multiplicity bin | ee | μμ | |---|-----------------------------------|-----------------------------------| | $\sigma_{hadron}(Z+1b,Z\rightarrow\ell\ell)(pb)$ | $3.25 \pm 0.08 \pm 0.29 \pm 0.06$ | $3.47 \pm 0.06 \pm 0.27 \pm 0.11$ | | $\sigma_{hadron}(Z+2b,Z\rightarrow\ell\ell)(pb)$ | $0.39 \pm 0.04 \pm 0.07 \pm 0.02$ | $0.36 \pm 0.03 \pm 0.07 \pm 0.03$ | | $\sigma_{hadron}(Z+b,Z \rightarrow \ell\ell)(pb)$ | $3.64 \pm 0.09 \pm 0.35 \pm 0.08$ | $3.83 \pm 0.07 \pm 0.31 \pm 0.14$ | ## Observation of pp > Z > 41 # B_s→μμ Candidate Monophoton Event Monophoton Event CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604 CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604 CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604 Lumi section: 604